Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 49(6): 915-923, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374364

RESUMO

Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.


Assuntos
Sinais (Psicologia) , Comportamento de Procura de Droga , Hipocampo , Locus Cerúleo , Autoadministração , Animais , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Feminino , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Morfina/farmacologia , Morfina/administração & dosagem , Ratos Sprague-Dawley , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia
2.
Pain ; 165(1): 202-215, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703419

RESUMO

ABSTRACT: Bradykinin is a peptide implicated in inflammatory pain in both humans and rodents. In rodent sensory neurons, activation of B1 and B2 bradykinin receptors induces neuronal hyperexcitability. Recent evidence suggests that human and rodent dorsal root ganglia (DRG), which contain the cell bodies of sensory neurons, differ in the expression and function of key GPCRs and ion channels; whether bradykinin receptor expression and function are conserved across species has not been studied in depth. In this study, we used human DRG tissue from organ donors to provide a detailed characterization of bradykinin receptor expression and bradykinin-induced changes in the excitability of human sensory neurons. We found that B2 and, to a lesser extent, B1 receptors are expressed by human DRG neurons and satellite glial cells. B2 receptors were enriched in the nociceptor subpopulation. Using patch-clamp electrophysiology, we found that acute bradykinin increases the excitability of human sensory neurons, whereas prolonged exposure to bradykinin decreases neuronal excitability in a subpopulation of human DRG neurons. Finally, our analyses suggest that donor's history of chronic pain and age may be predictors of higher B1 receptor expression in human DRG neurons. Together, these results indicate that acute bradykinin-induced hyperexcitability, first identified in rodents, is conserved in humans and provide further evidence supporting bradykinin signaling as a potential therapeutic target for treating pain in humans.


Assuntos
Bradicinina , Receptores da Bradicinina , Humanos , Bradicinina/metabolismo , Gânglios Espinais/metabolismo , Nociceptores/metabolismo , Dor , Receptores da Bradicinina/metabolismo , Células Receptoras Sensoriais/metabolismo
3.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461736

RESUMO

Peripheral sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli including touch, temperature, and pain to the central nervous system. Recent advances in single-cell RNA-sequencing (scRNA-seq) have provided new insights into the diversity of sensory ganglia cell types in rodents, non-human primates, and humans, but it remains difficult to compare transcriptomically defined cell types across studies and species. Here, we built cross-species harmonized atlases of DRG and TG cell types that describe 18 neuronal and 11 non-neuronal cell types across 6 species and 19 studies. We then demonstrate the utility of this harmonized reference atlas by using it to annotate newly profiled DRG nuclei/cells from both human and the highly regenerative axolotl. We observe that the transcriptomic profiles of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The new resources and data presented here can guide future studies in comparative transcriptomics, simplify cell type nomenclature differences across studies, and help prioritize targets for future pain therapy development.

4.
Nat Neurosci ; 26(7): 1185-1195, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277487

RESUMO

Neurons, astrocytes and oligodendrocytes locally regulate protein translation within distal processes. Here, we tested whether there is regulated local translation within peripheral microglial processes (PeMPs) from mouse brain. We show that PeMPs contain ribosomes that engage in de novo protein synthesis, and these are associated with transcripts involved in pathogen defense, motility and phagocytosis. Using a live slice preparation, we further show that acute translation blockade impairs the formation of PeMP phagocytic cups, the localization of lysosomal proteins within them, and phagocytosis of apoptotic cells and pathogen-like particles. Finally, PeMPs severed from their somata exhibit and require de novo local protein synthesis to effectively surround pathogen-like particles. Collectively, these data argue for regulated local translation in PeMPs and indicate a need for new translation to support dynamic microglial functions.


Assuntos
Microglia , Fagocitose , Camundongos , Animais , Microglia/metabolismo , Fagocitose/fisiologia , Neurônios/metabolismo , Astrócitos/metabolismo
5.
bioRxiv ; 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37034782

RESUMO

Bradykinin is a peptide implicated in inflammatory pain in both humans and rodents. In rodent sensory neurons, activation of B1 and B2 bradykinin receptors induces neuronal hyperexcitability. Recent evidence suggests that human and rodent dorsal root ganglia (DRG), which contain the cell bodies of sensory neurons, differ in the expression and function of key GPCRs and ion channels; whether BK receptor expression and function are conserved across species has not been studied in depth. In this study, we used human DRG tissue from organ donors to provide a detailed characterization of bradykinin receptor expression and bradykinin-induced changes in the excitability of human sensory neurons. We found that B2 and, to a lesser extent, B1 receptors are expressed by human DRG neurons and satellite glial cells. B2 receptors were enriched in the nociceptor subpopulation. Using patch-clamp electrophysiology, we found that acute bradykinin increases the excitability of human sensory neurons, while prolonged exposure to bradykinin decreases neuronal excitability in a subpopulation of human DRG neurons. Finally, our analyses suggest that donor’s history of chronic pain and age may be predictors of higher B1 receptor expression in human DRG neurons. Together, these results indicate that acute BK-induced hyperexcitability, first identified in rodents, is conserved in humans and provide further evidence supporting BK signaling as a potential therapeutic target for treating pain in humans.

6.
Pain ; 163(8): 1603-1621, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961756

RESUMO

ABSTRACT: Activation of cannabinoid receptor type 1 (CB 1 ) produces analgesia in a variety of preclinical models of pain; however, engagement of central CB 1 receptors is accompanied by unwanted side effects, such as psychoactivity, tolerance, and dependence. Therefore, some efforts to develop novel analgesics have focused on targeting peripheral CB 1 receptors to circumvent central CB 1 -related side effects. In the present study, we evaluated the effects of acute and repeated dosing with the peripherally selective CB 1 -preferring agonist CB-13 on nociception and central CB 1 -related phenotypes in a model of inflammatory pain in mice. We also evaluated cellular mechanisms underlying CB-13-induced antinociception in vitro using cultured mouse dorsal root ganglion neurons. CB-13 reduced inflammation-induced mechanical allodynia in male and female mice in a peripheral CB 1 -receptor-dependent manner and relieved inflammatory thermal hyperalgesia. In cultured mouse dorsal root ganglion neurons, CB-13 reduced TRPV1 sensitization and neuronal hyperexcitability induced by the inflammatory mediator prostaglandin E 2 , providing potential mechanistic explanations for the analgesic actions of peripheral CB 1 receptor activation. With acute dosing, phenotypes associated with central CB 1 receptor activation occurred only at a dose of CB-13 approximately 10-fold the ED 50 for reducing allodynia. Strikingly, repeated dosing resulted in both analgesic tolerance and CB 1 receptor dependence, even at a dose that did not produce central CB 1 -receptor-mediated phenotypes on acute dosing. This suggests that repeated CB-13 dosing leads to increased CNS exposure and unwanted engagement of central CB 1 receptors. Thus, caution is warranted regarding therapeutic use of CB-13 with the goal of avoiding CNS side effects. Nonetheless, the clear analgesic effect of acute peripheral CB 1 receptor activation suggests that peripherally restricted cannabinoids are a viable target for novel analgesic development.


Assuntos
Analgesia , Agonistas de Receptores de Canabinoides , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Sistema Nervoso Central , Feminino , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Naftalenos , Dor/tratamento farmacológico , Receptor CB1 de Canabinoide/agonistas
7.
Mol Biol Rep ; 46(4): 4369-4375, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31267326

RESUMO

Therapeutic benefits of deep brain stimulation (DBS), a neurosurgical treatment for certain movement disorders and other neurologic conditions, are well documented, but DBS mechanisms remain largely unexplained. DBS is thought to modulate pathological neural activity. However, although astrocytes, the most numerous cell type in the brain, play a significant role in neurotransmission, chemical homeostasis and synaptic plasticity, their role in DBS has not been fully examined. To investigate astrocytic function in DBS, we applied DBS-like high frequency electrical stimulation for 24 h to human astrocytes in vitro and analyzed single cell transcriptome mRNA profile. We found that DBS-like high frequency stimulation negatively impacts astrocyte metabolism and promotes the release of extracellular matrix (matricellular) proteins, including IGFBP3, GREM1, IGFBP5, THBS1, and PAPPA. Our results suggest that astrocytes are involved in the long-term modulation of extra cellular matrix environments and that they may influence persistent cell-to-cell interaction and help maintain neuromodulation over time.


Assuntos
Astrócitos/metabolismo , Estimulação Encefálica Profunda/métodos , Proteínas da Matriz Extracelular/metabolismo , Astrócitos/fisiologia , Encéfalo , Estimulação Elétrica/métodos , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Expressão Gênica/genética , Humanos , Plasticidade Neuronal , Cultura Primária de Células , Análise de Sequência de RNA/métodos , Análise de Célula Única
8.
Blood Res ; 49(3): 162-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25325035

RESUMO

BACKGROUND: Although adding rituximab to the chemotherapy regimen of cyclophosphamide, vincristine, doxorubicin, and prednisone (R-CHOP) has improved clinical outcomes of patients with diffuse large B-cell lymphoma (DLBCL), several recent studies have shown that the effect of rituximab is dominantly in the non-germinal center (non-GC) subtype compared to the germinal center (GC) subtype. Natural killer (NK) cell count, a surrogate marker of immune status, is associated with clinical outcomes in DLBCL patients in the rituximab era. We investigated whether the impact of NK cells on clinical outcomes differed according to the immunophenotype of DLBCL. METHODS: This study analyzed 72 DLBCL patients treated with R-CHOP between January 2010 and January 2014. RESULTS: Low NK cell counts (<100/µL) were associated with poor progression-free survival (PFS) and overall survival (OS) compared to high NK cell counts. In multivariate analysis, low NK cell count was an independent prognostic factor for PFS and OS. However, survival did not significantly differ between the GC and non-GC subtypes. We examined the clinical influence of NK cells according to the immunophenotype and found that low NK cell counts were significantly associated with poor PFS and OS in non-GC cases, but not in GC cases. CONCLUSION: Low NK cell counts at diagnosis are associated with poor clinical outcomes in DLBCL patients treated with R-CHOP therapy. However, the impact is significant only in non-GC subtype DLBCL, not in the GC subtype.

9.
Cancer Res Treat ; 45(3): 244-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24155685

RESUMO

A 37-year-old male presented with a mass measuring 2.5 cm in size in the midbrain and obstructive hydrocephalus, which had manifested as a headache and dizziness. Magnetic resonance (MR) imaging of the brain showed intermediate enhancement on T1-weighted MR imaging and a high intensity of enhancement on T2-weighted MR. Neurosurgeons performed an occipital craniotomy with partial removal of the tumor and the postoperative diagnosis was a pineal parenchymal tumor with intermediate differentiation. He had undergone irradiation with 54 Gy of radiation on 27 fractions for removal of the remaining tumor approximately one month after surgery. However, in follow-up imaging performed four months after radiotherapy, a remnant mass in the superoposterior aspect of the midbrain was found to have extended to the hypothalamus and the third ventricle. He was treated with six cycles of procarbazine, lomustine, vincristine chemotherapy. At five months since the completion of chemotherapy, the brain MR imaging showed no evidence of any remaining tumor and he no longer displayed any of his initial symptoms.

10.
Korean J Intern Med ; 28(2): 206-15, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23526131

RESUMO

BACKGROUND/AIMS: To compare the frequency of metabolic syndrome (MetS) and magnitude of insulin resistance, measured by the homeostatic model assessment of insulin resistance (HOMA-IR), between South Korean women with rheumatoid arthritis (RA) and healthy subjects, and to evaluate risk factors for MetS and increased HOMA-IR in patients with RA. METHODS: In a cross-sectional setting, 84 female patients with RA and 109 age-matched healthy female subjects were consecutively recruited at a university-affiliated rheumatology center in South Korea. MetS was defined according to the Third Report of the National Cholesterol Education Program's Adult Treatment Panel (NCEP-ATP III) 2004 criteria. RESULTS: The frequency of MetS did not differ significantly between patients with RA (19%) and healthy subjects (15.6%, p = 0.566), although patients with RA had a higher HOMA-IR compared with healthy subjects (p < 0.001). Patients with RA met the NCEP-ATP III 2004 criteria for high blood pressure more often than healthy subjects (44% vs. 19.3%, p < 0.001), and low high density lipoprotein cholesterol was more prevalent in healthy subjects (33%) than in patients with RA (14.3%, p = 0.004). Although no obvious risk factors for the presence of MetS were identified in patients with RA, higher serum C-reactive protein and disease activity score assessed using the 28-joint count for swelling and tenderness-erythrocyte sedimentation rate significantly contributed to a higher HOMA-IR. CONCLUSIONS: Despite their increased insulin resistance, South Korean women with RA did not have a significantly higher frequency of MetS compared with that in healthy subjects.


Assuntos
Artrite Reumatoide/epidemiologia , Síndrome Metabólica/epidemiologia , Adulto , Idoso , Artrite Reumatoide/diagnóstico , Biomarcadores/sangue , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Estudos Transversais , Feminino , Humanos , Resistência à Insulina , Modelos Lineares , Modelos Logísticos , Síndrome Metabólica/sangue , Síndrome Metabólica/diagnóstico , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Prevalência , República da Coreia/epidemiologia , Medição de Risco , Fatores de Risco , Fatores Sexuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...